113 research outputs found

    Human-centered machine learning through interactive visualization

    Get PDF
    The goal of visual analytics (VA) systems is to solve complex problems by integrating automated data analysis methods, such as machine learning (ML) algorithms, with interactive visualizations. We propose a conceptual framework that models human interactions with ML components in the VA process, and makes the crucial interplay between automated algorithms and interactive visualizations more concrete. The framework is illustrated through several examples. We derive three open research challenges at the intersection of ML and visualization research that will lead to more effective data analysis

    Visual interaction with dimensionality reduction: a structured literature analysis

    Get PDF
    Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations. Nevertheless, a general, structured understanding of this integration is missing. To address this, we systematically studied the visual analytics and visualization literature to investigate how analysts interact with automatic DR techniques. The results reveal seven common interaction scenarios that are amenable to interactive control such as specifying algorithmic constraints, selecting relevant features, or choosing among several DR algorithms. We investigate specific implementations of visual analysis systems integrating DR, and analyze ways that other machine learning methods have been combined with DR. Summarizing the results in a “human in the loop” process model provides a general lens for the evaluation of visual interactive DR systems. We apply the proposed model to study and classify several systems previously described in the literature, and to derive future research opportunities

    Visual parameter optimisation for biomedical image processing

    Get PDF
    Background: Biomedical image processing methods require users to optimise input parameters to ensure high quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results: We present a visualisation method that transforms users’ ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions: The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches

    Information Visualisation for Project Management: Case Study of Bath Formula Student Project

    Get PDF
    This paper contributes to a better understanding and design of dashboards for monitoring of engineering projects based on the projects’ digital footprint and user-centered design approach. The paper presents an explicit insight-based framework for the evaluation of dashboard visualisations and compares the performance of two groups of student engineering project managers against the framework: a group with the dashboard visualisations and a group without the dashboard. The results of our exploratory study demonstrate that student project managers who used the dashboard generated more useful information and exhibited more complex reasoning on the project progress, thus informing knowledge of the provision of information to engineers in support of their project understanding

    Prediction of microvascular invasion of hepatocellular carcinoma: value of volumetric iodine quantification using preoperative dual-energy computed tomography

    Get PDF
    Abstract Background To investigate the potential value of volumetric iodine quantification using preoperative dual-energy computed tomography (DECT) for predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC). Methods This retrospective study included patients with single HCC treated through surgical resection who underwent preoperative DECT. Quantitative DECT features, including normalized iodine concentration (NIC) to the aorta and mixed-energy CT attenuation value in the arterial phase, were three-dimensionally measured for peritumoral and intratumoral regions: (i) layer-by-layer analysis for peritumoral layers (outer layers 1 and 2; numbered in close order from the tumor boundary) and intratumoral layers (inner layers 1 and 2) with 2-mm layer thickness and (ii) volume of interest (VOI)-based analysis with different volume coverage (tumor itself; VOIO1, tumor plus outer layer 1; VOIO2, tumor plus outer layers 1 and 2; VOII1, tumor minus inner layer 1; VOII2, tumor minus inner layers 1 and 2). In addition, qualitative CT features, including peritumoral enhancement and tumor margin, were assessed. Qualitative and quantitative CT features were compared between HCC patients with and without MVI. Diagnostic performance of DECT parameters of layers and VOIs was assessed using receiver operating characteristic curve analysis. Results A total of 36 patients (24 men, mean age 59.9 ± 8.5 years) with MVI (n = 14) and without MVI (n = 22) were included. HCCs with MVI showed significantly higher NICs of outer layer 1, outer layer 2, VOIO1, and VOIO2 than those without MVI (P = 0.01, 0.04, 0.02, 0.02, respectively). Among the NICs of layers and VOIs, the highest area under the curve was obtained in outer layer 1 (0.747). Qualitative features, including peritumoral enhancement and tumor margin, and the mean CT attenuation of each layer and each VOI were not significantly different between HCCs with and without MVI (both P > 0.05). Conclusions Volumetric iodine quantification of peritumoral and intratumoral regions in arterial phase using DECT may help predict the MVI of HCC

    Making machine intelligence less scary for criminal analysts: reflections on designing a visual comparative case analysis tool

    Get PDF
    A fundamental task in Criminal Intelligence Analysis is to analyze the similarity of crime cases, called CCA, to identify common crime patterns and to reason about unsolved crimes. Typically, the data is complex and high dimensional and the use of complex analytical processes would be appropriate. State-of-the-art CCA tools lack flexibility in interactive data exploration and fall short of computational transparency in terms of revealing alternative methods and results. In this paper, we report on the design of the Concept Explorer, a flexible, transparent and interactive CCA system. During this design process, we observed that most criminal analysts are not able to understand the underlying complex technical processes, which decrease the users' trust in the results and hence a reluctance to use the tool}. Our CCA solution implements a computational pipeline together with a visual platform that allows the analysts to interact with each stage of the analysis process and to validate the result. The proposed Visual Analytics workflow iteratively supports the interpretation of the results of clustering with the respective feature relations, the development of alternative models, as well as cluster verification. The visualizations offer an understandable and usable way for the analyst to provide feedback to the system and to observe the impact of their interactions. Expert feedback confirmed that our user-centred design decisions made this computational complexity less scary to criminal analysts

    Combined Use of Fe-Models for Pevention of Ecological Deterioration of Areas Next to a River Hydropower Complex

    No full text

    Studies on cepaea,

    No full text
    corecore